Algèbre linéaire Exemples

Trouver la dimension du noyau [[17,22,4],[2,9,11],[4,6,13]]
[1722429114613]1722429114613
Étape 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Étape 2
Déterminez la forme d’échelon en ligne réduite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multiply each element of R1R1 by 117117 to make the entry at 1,11,1 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Multiply each element of R1R1 by 117117 to make the entry at 1,11,1 a 11.
[1717221741729114613]⎢ ⎢1717221741729114613⎥ ⎥
Étape 2.1.2
Simplifiez R1R1.
[1221741729114613]⎢ ⎢1221741729114613⎥ ⎥
[1221741729114613]⎢ ⎢1221741729114613⎥ ⎥
Étape 2.2
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,1 a 0.
[122174172-219-2(2217)11-2(417)4613]
Étape 2.2.2
Simplifiez R2.
[12217417010917179174613]
[12217417010917179174613]
Étape 2.3
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[12217417010917179174-416-4(2217)13-4(417)]
Étape 2.3.2
Simplifiez R3.
[12217417010917179170141720517]
[12217417010917179170141720517]
Étape 2.4
Multiply each element of R2 by 17109 to make the entry at 2,2 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Multiply each element of R2 by 17109 to make the entry at 2,2 a 1.
[12217417171090171091091717109179170141720517]
Étape 2.4.2
Simplifiez R2.
[12217417011791090141720517]
[12217417011791090141720517]
Étape 2.5
Perform the row operation R3=R3-1417R2 to make the entry at 3,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Perform the row operation R3=R3-1417R2 to make the entry at 3,2 a 0.
[12217417011791090-141701417-1417120517-1417179109]
Étape 2.5.2
Simplifiez R3.
[1221741701179109001167109]
[1221741701179109001167109]
Étape 2.6
Multiply each element of R3 by 1091167 to make the entry at 3,3 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Multiply each element of R3 by 1091167 to make the entry at 3,3 a 1.
[1221741701179109109116701091167010911671167109]
Étape 2.6.2
Simplifiez R3.
[1221741701179109001]
[1221741701179109001]
Étape 2.7
Perform the row operation R2=R2-179109R3 to make the entry at 2,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Perform the row operation R2=R2-179109R3 to make the entry at 2,3 a 0.
[122174170-17910901-1791090179109-1791091001]
Étape 2.7.2
Simplifiez R2.
[12217417010001]
[12217417010001]
Étape 2.8
Perform the row operation R1=R1-417R3 to make the entry at 1,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Perform the row operation R1=R1-417R3 to make the entry at 1,3 a 0.
[1-41702217-4170417-4171010001]
Étape 2.8.2
Simplifiez R1.
[122170010001]
[122170010001]
Étape 2.9
Perform the row operation R1=R1-2217R2 to make the entry at 1,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 2.9.1
Perform the row operation R1=R1-2217R2 to make the entry at 1,2 a 0.
[1-221702217-221710-22170010001]
Étape 2.9.2
Simplifiez R1.
[100010001]
[100010001]
[100010001]
Étape 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22, and a33
Pivot Columns: 1,2, and 3
Étape 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
0
 [x2  12  π  xdx ]